Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Two-step oxidation of glycerol to glyceric acid catalyzed by the Phanerochaete chrysosporium glyoxal oxidase.

Identifieur interne : 000406 ( Main/Exploration ); précédent : 000405; suivant : 000407

Two-step oxidation of glycerol to glyceric acid catalyzed by the Phanerochaete chrysosporium glyoxal oxidase.

Auteurs : Tomás Roncal [Espagne] ; Carmen Mu Oz ; Leire Lorenzo ; Belén Maestro ; María Del Mar Díaz De Guere U

Source :

RBID : pubmed:22226201

Descripteurs français

English descriptors

Abstract

Glyoxal oxidase of P. chrysosporium is a radical copper oxidase that catalyzes oxidation of aldehydes to carboxylic acids coupled to dioxygen reduction to H(2)O(2). In addition to known substrates, glycerol is also found to be a substrate for glyoxal oxidase. During enzyme turnover, glyoxal oxidase undergoes a reversible inactivation, probably caused by loss of the active site free radical, resulting in short-lasting enzyme activities and undetectable substrate conversions. Enzyme activity could be extended by including two additional enzymes, horseradish peroxidase and catalase, in addition to a redox chemical activator, such as Mn(III) (or Mn(II)+H(2)O(2)) or hexachloroiridate. Using this three-enzyme system glycerol was converted in glyceric acid in a two-step reaction, with glyceraldehyde as intermediate. A possible operation mechanism is proposed in which the three enzymes would work coordinately allowing to maintain a sustained glyoxal oxidase activity. In the course of its catalytic cycle, glyoxal oxidase alternates between two functional and interconvertible reduced and oxidized forms resulting from a two-electron transfer process. However, glyoxal oxidase can also undergo an one-electron reduction to a catalytically inactive form lacking the active site free radical. Horseradish peroxidase could use glyoxal oxidase-generated H(2)O(2) to oxidize Mn(II) to Mn(III) which, in turn, would reoxidize and reactivate the inactive form of glyoxal oxidase. Catalase would remove the excess of H(2)O(2) generated during the reaction. In spite of the improvement achieved using the three-enzyme system, glyoxal oxidase inactivation still occurred, which resulted in low substrate conversions. Possible causes of inactivation, including end-product inhibition, are discussed.

DOI: 10.1016/j.enzmictec.2011.11.007
PubMed: 22226201


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Two-step oxidation of glycerol to glyceric acid catalyzed by the Phanerochaete chrysosporium glyoxal oxidase.</title>
<author>
<name sortKey="Roncal, Tomas" sort="Roncal, Tomas" uniqKey="Roncal T" first="Tomás" last="Roncal">Tomás Roncal</name>
<affiliation wicri:level="2">
<nlm:affiliation>Bioenergy Area, Energy Unit, Tecnalia Research and Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 San Sebastián, Spain. tomas.roncal@tecnalia.com</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Bioenergy Area, Energy Unit, Tecnalia Research and Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 San Sebastián</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Pays basque</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mu Oz, Carmen" sort="Mu Oz, Carmen" uniqKey="Mu Oz C" first="Carmen" last="Mu Oz">Carmen Mu Oz</name>
</author>
<author>
<name sortKey="Lorenzo, Leire" sort="Lorenzo, Leire" uniqKey="Lorenzo L" first="Leire" last="Lorenzo">Leire Lorenzo</name>
</author>
<author>
<name sortKey="Maestro, Belen" sort="Maestro, Belen" uniqKey="Maestro B" first="Belén" last="Maestro">Belén Maestro</name>
</author>
<author>
<name sortKey="Diaz De Guere U, Maria Del Mar" sort="Diaz De Guere U, Maria Del Mar" uniqKey="Diaz De Guere U M" first="María Del Mar" last="Díaz De Guere U">María Del Mar Díaz De Guere U</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22226201</idno>
<idno type="pmid">22226201</idno>
<idno type="doi">10.1016/j.enzmictec.2011.11.007</idno>
<idno type="wicri:Area/Main/Corpus">000458</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000458</idno>
<idno type="wicri:Area/Main/Curation">000458</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000458</idno>
<idno type="wicri:Area/Main/Exploration">000458</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Two-step oxidation of glycerol to glyceric acid catalyzed by the Phanerochaete chrysosporium glyoxal oxidase.</title>
<author>
<name sortKey="Roncal, Tomas" sort="Roncal, Tomas" uniqKey="Roncal T" first="Tomás" last="Roncal">Tomás Roncal</name>
<affiliation wicri:level="2">
<nlm:affiliation>Bioenergy Area, Energy Unit, Tecnalia Research and Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 San Sebastián, Spain. tomas.roncal@tecnalia.com</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Bioenergy Area, Energy Unit, Tecnalia Research and Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 San Sebastián</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Pays basque</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mu Oz, Carmen" sort="Mu Oz, Carmen" uniqKey="Mu Oz C" first="Carmen" last="Mu Oz">Carmen Mu Oz</name>
</author>
<author>
<name sortKey="Lorenzo, Leire" sort="Lorenzo, Leire" uniqKey="Lorenzo L" first="Leire" last="Lorenzo">Leire Lorenzo</name>
</author>
<author>
<name sortKey="Maestro, Belen" sort="Maestro, Belen" uniqKey="Maestro B" first="Belén" last="Maestro">Belén Maestro</name>
</author>
<author>
<name sortKey="Diaz De Guere U, Maria Del Mar" sort="Diaz De Guere U, Maria Del Mar" uniqKey="Diaz De Guere U M" first="María Del Mar" last="Díaz De Guere U">María Del Mar Díaz De Guere U</name>
</author>
</analytic>
<series>
<title level="j">Enzyme and microbial technology</title>
<idno type="eISSN">1879-0909</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alcohol Oxidoreductases (genetics)</term>
<term>Alcohol Oxidoreductases (metabolism)</term>
<term>Biotechnology (methods)</term>
<term>Catalase (metabolism)</term>
<term>Catalysis (MeSH)</term>
<term>Glyceric Acids (metabolism)</term>
<term>Glycerol (metabolism)</term>
<term>Horseradish Peroxidase (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Phanerochaete (enzymology)</term>
<term>Phanerochaete (genetics)</term>
<term>Pichia (enzymology)</term>
<term>Pichia (genetics)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Substrate Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides glycériques (métabolisme)</term>
<term>Alcohol oxidoreductases (génétique)</term>
<term>Alcohol oxidoreductases (métabolisme)</term>
<term>Biotechnologie (méthodes)</term>
<term>Catalase (métabolisme)</term>
<term>Catalyse (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Glycérol (métabolisme)</term>
<term>Horseradish peroxidase (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Phanerochaete (enzymologie)</term>
<term>Phanerochaete (génétique)</term>
<term>Pichia (enzymologie)</term>
<term>Pichia (génétique)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Spécificité du substrat (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Alcohol Oxidoreductases</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alcohol Oxidoreductases</term>
<term>Catalase</term>
<term>Glyceric Acids</term>
<term>Glycerol</term>
<term>Horseradish Peroxidase</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Phanerochaete</term>
<term>Pichia</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Phanerochaete</term>
<term>Pichia</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Phanerochaete</term>
<term>Pichia</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Alcohol oxidoreductases</term>
<term>Phanerochaete</term>
<term>Pichia</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Biotechnology</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides glycériques</term>
<term>Alcohol oxidoreductases</term>
<term>Catalase</term>
<term>Glycérol</term>
<term>Horseradish peroxidase</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Biotechnologie</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalysis</term>
<term>Kinetics</term>
<term>Oxidation-Reduction</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Catalyse</term>
<term>Cinétique</term>
<term>Oxydoréduction</term>
<term>Spécificité du substrat</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glyoxal oxidase of P. chrysosporium is a radical copper oxidase that catalyzes oxidation of aldehydes to carboxylic acids coupled to dioxygen reduction to H(2)O(2). In addition to known substrates, glycerol is also found to be a substrate for glyoxal oxidase. During enzyme turnover, glyoxal oxidase undergoes a reversible inactivation, probably caused by loss of the active site free radical, resulting in short-lasting enzyme activities and undetectable substrate conversions. Enzyme activity could be extended by including two additional enzymes, horseradish peroxidase and catalase, in addition to a redox chemical activator, such as Mn(III) (or Mn(II)+H(2)O(2)) or hexachloroiridate. Using this three-enzyme system glycerol was converted in glyceric acid in a two-step reaction, with glyceraldehyde as intermediate. A possible operation mechanism is proposed in which the three enzymes would work coordinately allowing to maintain a sustained glyoxal oxidase activity. In the course of its catalytic cycle, glyoxal oxidase alternates between two functional and interconvertible reduced and oxidized forms resulting from a two-electron transfer process. However, glyoxal oxidase can also undergo an one-electron reduction to a catalytically inactive form lacking the active site free radical. Horseradish peroxidase could use glyoxal oxidase-generated H(2)O(2) to oxidize Mn(II) to Mn(III) which, in turn, would reoxidize and reactivate the inactive form of glyoxal oxidase. Catalase would remove the excess of H(2)O(2) generated during the reaction. In spite of the improvement achieved using the three-enzyme system, glyoxal oxidase inactivation still occurred, which resulted in low substrate conversions. Possible causes of inactivation, including end-product inhibition, are discussed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22226201</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>05</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-0909</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>50</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2012</Year>
<Month>Feb</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>Enzyme and microbial technology</Title>
<ISOAbbreviation>Enzyme Microb Technol</ISOAbbreviation>
</Journal>
<ArticleTitle>Two-step oxidation of glycerol to glyceric acid catalyzed by the Phanerochaete chrysosporium glyoxal oxidase.</ArticleTitle>
<Pagination>
<MedlinePgn>143-50</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.enzmictec.2011.11.007</ELocationID>
<Abstract>
<AbstractText>Glyoxal oxidase of P. chrysosporium is a radical copper oxidase that catalyzes oxidation of aldehydes to carboxylic acids coupled to dioxygen reduction to H(2)O(2). In addition to known substrates, glycerol is also found to be a substrate for glyoxal oxidase. During enzyme turnover, glyoxal oxidase undergoes a reversible inactivation, probably caused by loss of the active site free radical, resulting in short-lasting enzyme activities and undetectable substrate conversions. Enzyme activity could be extended by including two additional enzymes, horseradish peroxidase and catalase, in addition to a redox chemical activator, such as Mn(III) (or Mn(II)+H(2)O(2)) or hexachloroiridate. Using this three-enzyme system glycerol was converted in glyceric acid in a two-step reaction, with glyceraldehyde as intermediate. A possible operation mechanism is proposed in which the three enzymes would work coordinately allowing to maintain a sustained glyoxal oxidase activity. In the course of its catalytic cycle, glyoxal oxidase alternates between two functional and interconvertible reduced and oxidized forms resulting from a two-electron transfer process. However, glyoxal oxidase can also undergo an one-electron reduction to a catalytically inactive form lacking the active site free radical. Horseradish peroxidase could use glyoxal oxidase-generated H(2)O(2) to oxidize Mn(II) to Mn(III) which, in turn, would reoxidize and reactivate the inactive form of glyoxal oxidase. Catalase would remove the excess of H(2)O(2) generated during the reaction. In spite of the improvement achieved using the three-enzyme system, glyoxal oxidase inactivation still occurred, which resulted in low substrate conversions. Possible causes of inactivation, including end-product inhibition, are discussed.</AbstractText>
<CopyrightInformation>Copyright © 2011 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Roncal</LastName>
<ForeName>Tomás</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Bioenergy Area, Energy Unit, Tecnalia Research and Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 San Sebastián, Spain. tomas.roncal@tecnalia.com</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Muñoz</LastName>
<ForeName>Carmen</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lorenzo</LastName>
<ForeName>Leire</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Maestro</LastName>
<ForeName>Belén</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Díaz de Guereñu</LastName>
<ForeName>María del Mar</ForeName>
<Initials>Mdel M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D023362">Evaluation Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>12</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Enzyme Microb Technol</MedlineTA>
<NlmUniqueID>8003761</NlmUniqueID>
<ISSNLinking>0141-0229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005988">Glyceric Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>70KH64UX7G</RegistryNumber>
<NameOfSubstance UI="C042971">glyceric acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.-</RegistryNumber>
<NameOfSubstance UI="D000429">Alcohol Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.3.-</RegistryNumber>
<NameOfSubstance UI="C052371">glyoxal oxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D006735">Horseradish Peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.6</RegistryNumber>
<NameOfSubstance UI="D002374">Catalase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>PDC6A3C0OX</RegistryNumber>
<NameOfSubstance UI="D005990">Glycerol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000429" MajorTopicYN="N">Alcohol Oxidoreductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001709" MajorTopicYN="N">Biotechnology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002374" MajorTopicYN="N">Catalase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005988" MajorTopicYN="N">Glyceric Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005990" MajorTopicYN="N">Glycerol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006735" MajorTopicYN="N">Horseradish Peroxidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010843" MajorTopicYN="N">Pichia</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>08</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2011</Year>
<Month>11</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>11</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22226201</ArticleId>
<ArticleId IdType="pii">S0141-0229(11)00250-X</ArticleId>
<ArticleId IdType="doi">10.1016/j.enzmictec.2011.11.007</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
<region>
<li>Pays basque</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Diaz De Guere U, Maria Del Mar" sort="Diaz De Guere U, Maria Del Mar" uniqKey="Diaz De Guere U M" first="María Del Mar" last="Díaz De Guere U">María Del Mar Díaz De Guere U</name>
<name sortKey="Lorenzo, Leire" sort="Lorenzo, Leire" uniqKey="Lorenzo L" first="Leire" last="Lorenzo">Leire Lorenzo</name>
<name sortKey="Maestro, Belen" sort="Maestro, Belen" uniqKey="Maestro B" first="Belén" last="Maestro">Belén Maestro</name>
<name sortKey="Mu Oz, Carmen" sort="Mu Oz, Carmen" uniqKey="Mu Oz C" first="Carmen" last="Mu Oz">Carmen Mu Oz</name>
</noCountry>
<country name="Espagne">
<region name="Pays basque">
<name sortKey="Roncal, Tomas" sort="Roncal, Tomas" uniqKey="Roncal T" first="Tomás" last="Roncal">Tomás Roncal</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000406 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000406 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22226201
   |texte=   Two-step oxidation of glycerol to glyceric acid catalyzed by the Phanerochaete chrysosporium glyoxal oxidase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22226201" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020